
IEV~EL<

N m

FINAL REPORTI VM/370 SECURITY RETROFIT
PROGRAM-DETAILED DESIGN ANDIMPLEMENTATION PHASE

B.D. GOLD
R.R. LINDE

M. SCHAEFER
D EW.M. $HASBERGER
ELECTE o.H. THOMPSON

. 5 JA n P.C. WARD

D 21 MAY 1978

CLEARED
1-4FO OPEN PUBLCATIUN -

•.,, p ~~DEC 1 1 11 ,.
UI*C!ONAIt FOR FREEDOM OF INFORIMA•ION a) - TM'6062/001/00

AND SECURITY REVIEW (OASO-PA) "

DEPARTMENT OF DEFENSE ,.

v ~Tlab TT 09 STATEMENT A

Aproe tot Pulc11swlN 12 22 105
........................ o-.S'..!i]L "JDistribtion Unftitod

21 May 1978 System Development Corporation

•bL 1 - TM-6062/001/00I

FINAL REPORT VM/370 SECURITY RETRQFIT PROGRAP-Aceesýso"n For
DETAILED DESIGN AND IMPLEMENTATION PHASE NTIS GORA&I

DTIC TAB
Unnneounced ElB. D. Gold, R. R. Linde, M. Schaefer, Justification-.....

W.M. Shasberger, D.H. Thompson, P.C. Ward

System Development Corporation BY-_Distribution/...
Santa Monica, California 90406

Avavllabtily Codes
Contract MDA903-76.C-0260 iAvil and/or

ABSTRACT

This report describes a design strategy for performing a retrofit to
IBM Corporation's Virtual Machine 370 (VM/370) system that will
provide a time-shared environment in which user processes bearing
differing military classification levels may be operated
simultaneously without compromise to military security. The strategy
entails drawing together into a secure kernel those system functions
that may be exploited to violate security. This report finalizes the
results of the first two years of an ongoing research and development
program.

INTRODUCTION

The VM/370 Security Retrofit Program is a research and development
initiative, funded by the Defense Advanced Research Projects Agency
(ARPA), with additional funding provided by the Canadian Department of
National Defence and the United States Central Intelligence Agency.
The program's primary goal is the security retrofit of a popular
commercial operating system (VM/370). Two approaches were originally
planned: (1) the design of a feasible, formally verified security
kernel to VM/370. and (2) a 'hardening" effort to repair known VM/370

I,

" . :" m, L-"-- ," " - • /_ __ ._ :• ' ' •--,...,I

2 May 1978 System Development Corporation
TM-6062/001/00

penetration weaknesses. It was subsequently decided not to proceed
with the VM/370 hardening task because of the uncertainty of the end
result: correction of known security flaws does not guarantee the

absence of exploitable, but not yet detected, security flaws in the

'hjrifedY hytem.

,n.the,'frs!t year of the research program, the feasibility of adding a
secuifty-ke'rnel to VM/370 was studied and a kernel design for the

system waq produced. The retrofitted system is called KVM/370 (for
kerne1i!zed 4VM/370). The security enforcement mechanism, the kernel,

must implement a reference monitor that enforces a security policy. A
security kernel is a reference monitor that:

a. : mediates all attempts to access security objects;

b. is protected from the tampering attempts of either the

control software or the users;

c. is verifiably correct.

A security policy has been evolved that will permit as general a form

of controlled sharing of machine resources and classified data as
possible within the constraints of definIng a kernel that will:

a. be verifiable with respect to enforcing that policy;

b. have an acceptable effect on overall VM/370

performance;

c. require minimal rewriting or replacement of existing

code in the VM/370 Control Program (a retrofit);

d. preserve a maximum compatibility with VM/370

applications.

2

-. . - ~ ~ ~ : - 7- 7~~.-- .

21 May 1978 System Development Corporation
TM4-6 062/001/00

This effort has been inspired by the belief that encapsulation of

multiple, individual copies of an operating system under a virtual
machine monitor system can provide a practical, secure operating
system. SDC's experience with IBM's VM/370 supports this belief.

Even though the present implementations of VM/370 are totally insecure
against planned intrusiontl], this system appears to have sufficient

potential to warrant the present retrofit effort.

RETROFIT STRATEGY

A methodology was developed for partitioning the VM/370 control

program (VM/370-CP) into security-relevant and non-security-relevant
modules. The decision process is based on the principles of least
privilege and least common mechanism, defining security-relevant code
in CP as that code which executes privileged instructions or the code
which accesses global system data (i.e., control blocks traversing

security levels). In this way, security- relevant CP modules are
directly identifiable.

It was found in the first year of the project that most system data

need not be truly global, but global only over the VMs operating at a
given security level. The VMs at a given security level(2] could be

supported by a combination of a formally verified kernel operating in
real supervisor state and a Non-Kernel Control Program (NKCP)

executing in real problem state and consisting of all non-security-
relevant VM/370-CP code. The NKCP would execute as a virtual machine,
having access only to global system data for the virtual machines it
is supporting at the given security level.

In princ:Lple, there are significant differences between a security

retrofit to VM/370 and a new design of a secure VM/370. In both cases
it is necessary to design and specify the security enforcement
mechanisms for the security kernel, as well as to derive the set of

formal security invariants the kernel must preserve over the system.
It is found, however, that much of the code in an operating system

that virtualizes a computer, such as that found in VM/370-CP, either

3- . .

21 May 1978 System Development Corporation
TM-6062/001/00

has no security relevance or can be trivially modified so that it no
longer has any security relevance. Hence, much of the existing code
which provides functional capabilities to the virtual machines is
essentially usable as it stands.

Secondly, it is observed that such code, in fact all of VM/370, can be
virtualized. The strategy suggested by these observations involves
designing and verifying a relatively small body of code which is just
powerful enough to provide primitive virtualization and which controls
all forms of I/O access with respect to the security policy. It is
thus conceptually possible to run numerous copies of VM/370 atop this
simple kernel, each running in virtual supervisor state. Since the
kernel is the final arbiter and all access to real devices must
eventually pass through it (these accesses all require invocation of
privileged instructions, i.e., real supervisor state), no action of
the virtualized VM/370-CP can compromise security. The users would
run their programs atop the untrusted copies of virtualized VM/370.
If a virtualized VM/370-CP were to attempt to perform actions contrary ..

to the security policy, the kernel would prohibit such actions from
taking place. These potential denials of service could be avoided by
deleting the related code from the virtualized VM/370-CPs, but it is
important to observe that these matters have no effect upon the
enforcement of security since (1) the kernel was designed to enf~rce a
specific security policy, (2) the kernel was formally verified to
support the enforcement of that policy, and (3) the correctness proof
of the kernel made no assumptions about any of the virtual machines
running atop the kernel, particularly none with respect to an NKCP
itself.

In the interest of enhancing the performance of such a kernelized
system, it might be necessary to give certain system modules access to
multilevel system data. These are the modules which control the
sharing of real system resources among virtual machines at different
security levels. In order to maintain system security, it is
necessary to ascertain that such resource management modules properly
utilize the privileges granted them by the added common mechanism.

4

T!

21 may 1978 System Development Corporation

TM-6062/001/00

Such modules become *trusted processes.-, Where possible and

practical, the trusted processes are to be given the same formal

verification the kernel processes receive.

Where this is not practical or possible[31, the trusted processes are

subject to a thorough audit for the presence of errors or Trojan

Horses. encapsulated into a limited address space with restricted

reading and writing privileges, and restricted so that they operate in

real problem state with virtual addresses. These latter processes are

known as semi-trusted processes.

SECURITY POLICY

The KVM/370 kernel is designed to enforce a military security policy.
This requires the preservation of two security properties, the

security condition," and the "*-property."[4] These properties are

described in terms of three types of entities: subjects, objects and
security levels. Subjects are the active elements of the system for
which data access must be controlled (e.g., users, processes).
Objects are the data or data containers, access to which must be

controlled by the kernel. There is a security level associated with
each subject or object which describes the degree of clearance of the

subject or sensitivity of the object. A partial order, called
dominates, is defined on the security levels. Specific

interpretations of these elements will be given below.

The security condition requires that no subject may access an object
for the purpose of reading or updating unless the level of the subject

dominates that of the object. The *-property demands that a subject
may have write access to an object (permission to both read and write)
only if the subject and object are associated with precisely the same

security level.

In the main, subjects in KVM/370 are interpreted as the individual
NKCPs. The kernel provides i~olation among the NKCPs, but provides

little or no additional isolation between VMs under the same NKCP

5

21 May 1978 System Development Corporation
TM-6062/001/00

beyond that already provided in VM/370. Since all VMs operating under

the same NKCP act at the same security level, the kernel protects each

VM from other VMS at different security levels, but not necessarily

from VMS at the same level. Global processes, which must interface

with several NKCPs at different levels, are also subjects.

The objects in KVM/370 are collections of data areas on DASD devices

(or the entire DASD volume), tape volumes, unit record devices, real

core pages and processes, and VM working environments (control blocks,

scratch storage registers etc.).

During the current year, the evolution of United States National

Security Policy was studied in an effort to make KVM/370 more

responsive to the -uodifications that are being made to Executive Order

11652 and 11905. These modifications make it clear that it is
essential that computer systems not divulge information to

unauthorized individuals on the one hand, while prohibiting the

overclassification of data on the other hand. KVM/370 enforces the *-
property to prevent unauthorized declassification of data, and
produces detailed historical collateral classification information for

every new volume created by the system as a means of justifying its

classfication as a function of the classifications of all data to

which the virtual machine that created it had access. This historical

classification information may then be reviewed by a security officer

possessing original classification authority in order to determine the
appropriate classification for the data. Details on the KVM/370

Security Policy may be found in TM-6062/230/00, 11 May 1978.

OVERALL SYSTEM ARCHITECTURE

Figure 1 represents the architecture of kerneiized VM/370 (KVM/370),

consisting of the following domains:

1. The kernel and verified trusted processes, executing

in real supervisor state;

i6

21 May 1978 System Development Corporation
TM-6062/001/00

NO RVIRTUAL SUPERVISOR STATE
(ECRET (OP SECRET REAL PROBLE14 STATE

SECET)ECRT (C 'C2)) lVIRTUAL ADDRESSES

I NTERRUPTS I

PROGRAM KERNEL (VERIFED) REAL

REAL ADDRESSES A SUPERVISOR STATE DISK
SvC CONTROLS:

EXTERNAL ALL REAL I/O
ALL PAGING & SPOOLING I/O eas

MACHINE DECK ALLOCATION OF DASD PAGES, STORAGE PAGES SPOOLING
DMS0 SPOOLING CYLINDERS,

INPUT/OUTPUT I/O DEVICES
TAPES

UPDTE READERS

ROUND ROSIN INITIATOR U! PUNCHES
CPU SCHEDULER R(LOGIN)Y

SPIGULER I PRINTERS

SCHEDULERIPAGE REPLACEMEN
SELECTION ER DICSEETOPROCESS ALLOCATOR

PAGE SLOT

ALLOCATR ACUTN

SPOOL CYLINDER
ALLOCATOR

I/O SO4EGWUL

tRES NG11

ScMI-TRUSTED PROCESSES I TRUSTED PROCESSES
(AUDITED) I (VERIFIED)

VIRTUAL SUPERVISOR STATE I VIRTUAL AND REAL SUPERVISOR STATE
REAL PROILEM STATE VIRTUAL ADDRESSES
VIRTUAL ADDRESSES CAN USE REAL ADDRESSES
CAN NAME BUT NOT USE REALI

ADDRESSES
(AL. SUCH DESIGNATIONS

CHECKED 5y KERNEL S(" ALLOCATOR)
ALLCAR Figure 1.. KMW370 Syseum Architecture

7.................- - -

21 may 1978 System Development Corporation

TM -6062/0l01 /00

2. The audited semi-trusted processes, having access to

some global system data, executing in real problem
state, but having access only to virtual addresses;

3. The NKCPs, one per security level, having access to

system data for the supported security level only,
executing in real problem state, having access only to

virtual addresses;

4. The user VMs, each controlled by the appropriate NKCP
for its security level, executing in real problem

state.

It was intended that all kernel code and trusted process code would be
written in a strongly typed Pascal-based programming language such as

the EUCLID(5] language in order to facilitate formal verification.

However, as the time for system implementation drew near, it was found
that there were no available production quality compilers for EUCLID

or any other thoroughly typed Pascal-based programming language that
would permit efficient system programming on an 1814/378 base machine.

The requirement that the system programming language possess the
capability of A~ddressing and manipulating 1514/370 dependent data
structures is essential since the kernel must analyze, prepare, and
maintain numerous tables and control blocll~s whose structure is
dictated by the hardware. In order to provide for the future
verification and certification of KVM/370, it is desirable that a
maximum of detail on the manipulation of these data structures be
expressed in the higher-order language rather than in assembly
language. Lastly, it was essential that the compiler reliably produce
highly efficient executable code, lest the performance costs of the
system be impractically high. It was also necessary that the compiled
code not require a run-time support package for its excecution, since
the run-time package could be a possible source of security

compromise.

21 May 1978 System Development Corporation

TM-6862/001/00

After serious consideration of numerous languages for which compilers

either existed or were proposed, it was decided by ARPA that system

efficiency was of sufficient importance to permit the use of a
programming language that was not Pascal-based, providing it satisfied

the other exigencies for the project.

The language selected for the implementation of KVM/370 was the J3

dialect of the JOVIAL Programming Language, whose optimizing compiler
is in use on the AWACS project(ll]. JOVIAL is not a verification-
oriented programming language. Consequently, while the formal
specifications of KVM/370 will be formally verified against the
security policy enforcement criteria, the first implementation will

not be formally verified. Subsequently, when a production quality

compiler exists for a verification-oriented systems programming
language KVM/370 can be recoded in that language and then verified.

DESIGN TRADEOFFS

The user's system-use expectations will have an impact on the system
architecture. size of the kernel and trusted processes, overall system

performance, and level of effort required for implementation and
formal verification. Resource scheduling and management can be
performed on either a system-global or an NKCP-local basis. If done

on a system-global basis, the size of the kernel and trusted processes
is increased, the interfaces between the NKCPs and the global
processes becomes more intricate, verification becomes more difficult
and costly, system modification becomes less facile, but system

performance improves. If done on a local basis with most resource
management decisions performed by the NKCPs and perfunctory
reconciliations performed by the kernel, the opposite results hold;

system design, implementation, verification and interfaces are

simplified, while system performance may be adversely affected.

9

21 May 1978 System Development Corporation
TM-6062/001/00

In terms of greatest all-around adaptability co applications, ease of

implementation and verification, and best multilevel security, we

concluded that:

DASD page areas will be global;

Main page frame management will be based on global

allocation with global page replacement;

Multilevel shared reentrant systems will be provided

with all shared pages locked into corej

The CPU will be scheduled by the NKCPs.

KERNEL DESIGN

The kernel and trusted processes are the only portions of KVM/370
whose formal specifications will be formally verified. The system is
being designed such that there are no "upward" functional dependencies

(i.e., no function at level of abstraction i depends for its correct
operation on any function from level of abstraction J, if i < j)[6]
and [7]. In this way, it can be demonstrated that no trusted code
depends on the correctness and non-maliciousness of any untrusted,
unverified code. Further, the formal proof of correctness of KVM/370
will require only (1) the kernel and trusted processes be shown to
satisfy the requirements of enforcing the security policy, and (2) a
demonstration of the absence of unauthorized signalling capabilities
within the semi-trusted processes.

In the case of the Start I/O request to the kernel, the entire channel
control program is copied into a portion of the kernel's domain where

it is protected from modification by asynchronous attack. Address
translation is performed on the channel program. Then it is legality
checked by the kernel to guarantee that the program performs only

valid accesses, that all referenced pages are locked into core, and

16

~ }

21 May 1978 System Development Corporation

TM-6062/00l/•0

that the channel program is not self-modifying and contains no puns or

other security threats[6]. The I/O scheduler is then invoked and
control is eventually passed to the dispatcher module, simulating an
I/O Fast Release. When the I/O interrupt finally takes place, the

relevant pages are unlocked, and the condition code is passed as an

interrupt to the appropriate NKCP.

Each security level has a unique address space for use by its NKCP.
With the exception of the functions enumerated below, no NKCP can

communicate outside its address space or its VMs' address spaces.
Spool files, virtual channel-to-channel adapters (CTCA), and inter-VM
messages are handled by the NKCP and consequently cannot violate the
kernel's enforcement of the security policy.

The notable exceptions are:

Append-up for writing machine error records and

accounting data which are processed at the highest
security level in the systeml

Read-down to obtain access to a DASD whose
classification is dominated by the clearance of the
user's VM.

For purposes of design simplicity, each NKCP will appear to be
uninterruptible just as VM/370-CP currently is, i.e., the NKCP's

critical regions will be preserved. The NKCP may, in practice, be
interrupted by the kernel, but only if no NKCP shared variable (e.g.
its set of active page frames or real addresses) is modified while it
is servicing a user request. This constraint on NKCP shared variables
is the result of considerable effort in the area of kernel-NKCP

interaction. The consequences of this design decision, as well as the
considerations that led to it, are detailed in the Appendix. An NKCP
terminates a critical region (a locally uninterruptable code segment)
when it either schedules a VM (issues an LPSW) or when it issues an

I/0 request.

11 •

21 May 1978 System Development Corporation
TM-6062/001/00

NKCP DESIGN

Code is security-relevant if it can influence unmediated I/O directly
through the use of privileged instructions that manipulate devices or
user domains, or indirectly through the use of data structures that
either contain security enforcement data or can be viewed and modified
by processes operating at different security levels. Data is
security-relevant if it contains global information which traverses
several security levels.

It appears that a considerable amount of CP code is security-relevant

because it makes wide use of global system tables. Many of these
tables could be distributed so that each copy contains only data
relevant to a unique security level. The code manipulating these
distributed tables could easily be made reentrant so that most of the

code could lose its security relevance (privileged instructions would
still be security-relevant, however.)

An alternate approach is driven by identifying non-security-relevant
code in CP and virtualizing it out of the privileged execution doma4 .n.
The remainder, plus additional security enforcement code, becomes the
kernrl. The more code that is virtualized, the less there is to
verify. Apparently, the efficiency of this system degrades as code is
virtualized out of the kernel.

SYSTEM VERIFICATION

Formal verification of kernel and trusted processes at the
specification level will be of two kinds. These functions will be
shown to correctly implement the sharing policy between subjects and
objects in terms of the basic security principle and the *-property.
This form of proof involves demonstrating that all system state
transitions preserve a set of security invariants. The proof of
cor..ectness will be achieved with the assistance of an automated
verification tool which enhances the credibility of the formal logical

12

21 May 1978 System Development Corporation
TM-6062/001/00

demonstration. The second phase of the formal verification process is
formal proof that the trusted state transition function3 themselves
obey the *-property with respect to the system objects they read and
write. The analysis techniques required for this verification involve
simulated symbolic execution of source code. Research into methods of
flow analysis is being conducted by Millen[12], Denning(8] and others.
In the latter work, consideration is being given to the use of a
compiler to verify compliance with the security policy by the source
program. In Millen's work, the flow analysis is applied directly to
the top-level specification. Both methods involve the use of
automated tools with which the flow analysis is performed, followed by
the manual imposition of the security policy to the data flow paths in
order to establish a set of relations which must be shown to be
preserved by the system. The flow analysis phase of KVM/370
verification has been postponed until such time as appropriate tools
are available to the project.

POSSIBILITY OF HARDWARE ERRORS

One of the problems considered by the project was the possibility of
violations of the security policy occurring because of failure of the
hardware security controls. Some possibilities considered were:

failure of the privileged operation protection
mechanism;

an error in address translation or the Translation
Lookaside Buffer (TLB);

* failure of the storage protection mechanism;

f . mis-interpretation of a CCW by a channel;

.1
isg

21 May 198System Development Corporation
1978 TM-6062/001/00

*an 1/0 device responding to the wrong device address;

*mishandling of a command by an 1/O device.

Errors in the operation of the CPU and inboard channels were

considered unlikely if the system receives proper maintenance. In

addition, it appears to be difficult to guard against this type of

fail~ure. For similar reasons, we decided to ignore the possibility of

an, 1/O device responding to the wrong address because address

recognition logic on the S/370 channel is fairly simple. This left us

with the possibility of an 1/0 device mishandling a channel~command.

The most probable case of this type seemed to involve seeks on moving

head devices: the possibility of a mechanical error moving the access

arm to the wrong cylinder.

Questions had arisen as to the possibility that certain Direct Access -

Storage Devices were liable to incorrect seeks with a frequency that

increased with their age. SDC conducted an investigation to establish

hard data on the reality of these reported threats. Investigation of

the logic of 3330 type devices showed a vanishingly small probability

of a missed seek, inasmuch as the device controller counts the tracks

electronically as they pass under the head. We also forced over
20,000 seeks of 350 cylinders and tested for an incorrect home address
after each one. We found no missed seeks, nor were any seek retries
reported in the error log for that day. We now believe that the

redundancy checking built into the 3330 provides sufficient

reliability for multilevel security applications.

Obviously, if a DASD accesses the wrong cylinder on a seek command, it

is possible for a malicious user to read whatever is on the cylinder

accessed, or to w'rite incorrect information into those records. If

the probability of a missed seek going undetected by the controller is

as high as 0.1%, a user who causes a large number of seeks can
reasonably expect to gain unauthorized access to data belonging to

other users several times a week..

14

21 May 1978 System Development Corporation
TM-6062/001/00

The results of the study of the 3330 have obviated the necessity of
having to limit each DASD volume to a single level of security, as had
been contemplated prior to the experiment. However, some

installations may use older or other direct access storage devices
which may not be as reliable as the IBM drives that we tested. As a

result we decided to provide a mechanism for protecting against mis-
seeks, albeit at some cost. I/O requests are separated into
paging/spooling requests .and all others.

We note that all modern DASD devices can have an 8-byte key added to
each paging block without affecting the number of pages which will fit

on a cylinder. It was decided to write in each key the real cylinder
number, track and record number, VMid and virtual page number that it
contains, encrypted by a key that is determined at system startup and
unique for each security level. This should make the task of the

would-be penetrator hard enough to discourage any attempt to use this
mechanism.

For general I/O, it was decided to include a read-home-address CCW
after each seek, and to have the kernel validate the home address on
completion of the channel program. This would increase the average
time required to execute a channel program by 1/2 revolution (about 8
ms.). Since this represents nearly a 100% overhead in I/O operations,
it was decided to partition devices into two classes: trusted devices
and untrusted ones. A device is considered trusted if (1) it has been
designated by the installation's security officer as trusted, (2) no
mis-seeks on that device have gone undetected by the hardware (these
usually result in unit-check with no-record-found), and (3) less than
some threshold number of hardware-detected mis-seeks have occurred.
If any of these conditions is not satisfied, the device is regarded as
untrusted. Home address verification is applied only when (1) the
device is regarded as untrusted, (2) the I/O is not for paging or
spooling, and (3) the I/O has been requested by an untrusted process
(NKCP or scheduler/allocator).

15
TI _'

21 May 1978 System Development Corporation

TM-6062/00l/00

ELIMINATION OF KNOWN SE".URITY FLAWS

Almost every security flaw in the VN/370 system involves the

input/output functions[lJ. Stnce there is no address space validation
of input/output by the hardware, other than that perZormed by the

storage protection keys, V./370 must validity check all channel
programs and relocate all virtual addresses. This includes both main

storage addresses, and DASD cylinder addresses in seek arguments and
home addresses. The same I/O logic is repeated for several different

requirements: virtual spooling support, virtual console support,
virtual channel-to-channel adapter support, and a special VM/370 I/O

interface. Each variation of this support means that errors may be

present.

These errors occur in the translation of channel programs as a result

of the complexity of the channel command language. For example, the
same word in a channel program might be used as a command or as an J
operand address depending upon the execution sequence of the
program(lI. Since the System/370 architecture allows puns in the

channel, in that a word's interpretation depends on whether it is
received as the leading or trailing portion of a long command, it is
possible to bypass checking in these modules and access DASD records
[11.

Under KVM/379, we will not allow channel command words to take on

different meanings depending on the sequence of execution. Primarily,

this means that an NKCP cannot submit certain channel commands with

transfers or with certain modifier bits set. This does not preclude

users (VMs) from constructing such channel programs, it merely
requires the NKCP to put them into a standard form before submitting

them to the kernel. Further, these commands will be copied into the
kernel's data space and translated and modified there, preventing
their modification by an NKCP between the time of translation and time
of execution. Also, self-modifying channel programs will not be

permitted, such as those used by 0S/360 ISAM.

i, 16

21 May 1978 System Development Corporation

TM-6062/001/00

(

Certain VM/370 penetrations[l] dependent upon simultaneous

input/output and CPU execution are being countered by removing from

the address space of the requestor all pages which are buffering

input. This applies to both NKCP and user VMs. In the event either

NKCP or a VM needs access to such a page, its execution will be

delayed until the 1/0 completes and the page is made available. For

example, under VM/370. careful timing of asynchronous execution could

be used to exploit a bizarre oversight in condition-code checking to

gain a total system penetration (real supervisor state)[1].

Although the treatment of storage and timing channels(91 is beyond the
scope of a system such as VM/370, they must be controlled in a

military system such as KVM/370. In this respect, we will thoroughly
audit all semi-trusted processes that allocate and schedule resources

among VMs at different levels for Trojan Horses. Hence, it will not

be possible to transmit information over a covert communication
channel at a high enough bandwidth to make such attempts worthwhile.

Lastly, the initiator (Logon) will not allow a user process to assume

its identity (masquerade) at an unattended terminal. Under VM/370,

it is possible to reveal one's password to a virtual machine
masquerading as CP(l]. This can happen when users must share

terminals, a frequent occurrence at most installations. 'The initiator
will require that a unique character string be submitted at LOGON and
will monitor all input lines for this string. Strings containing

passwords will thus be processed by the initiator rather than by a
virtual machine.

CURRENT STATUS

The feasibility of performing a VM/370 security retrofit was
demonstrated during the first year of project activity. The results

of that work were reported in the TM-5855 series, and included an

informal system design identifying the major security kernel

17

21 May 1978 System Development Corporation
TM-6062/001/00

functions. The input and output parameters were defined and their

effects on KVM state variables were described.

During the year just ended, the security kernel and trusted processes

were formally specified in the SDC specification language, INA JO, a

strongly-typed dialect of the first order predicate calculus. After

the system data bases were defined, the coding of the NKCP and semi-

trusted processes was begun. In the last quarter of the project, the

implementation of the kernel and trusted processes was begun in the J3

dialect of JOVIAL.

KVM/376 security policy was re-examined in light of proposed

modifications to the National Security Policy as defined in Executive
Orders 11652 and 11905. KVM/370 security policy now takes account of

both discretionary and non-discretionary aspects of security.

The remaining documents in this TM-6862 series describe in greater
detail the results of these activities. The interested reader is

directed to the series table of contents, found in TM-6062/000/00, 21

May 1978.

PLANS

It is expected that system testing and integration will conclude by
the fall of 1978. At that time, KVM/370 will be installed in a
testing environment within the Defense Communications Agency
Engineering Center. Here, the prototype system will be evaluated on a

set of selected benchmark workloads and its perfomance will be tuned

to the extent possible within the constraints of the security policy.
In this way, the first steps can be undertaken toward determing the
costs of multilevel security on an IBM/378 mainframe. Initially, test

cases will be run under varying conditions in a periods processing
environment as expressed in TM-5855/003/00, 21 May 1977. This will
establish a basic scale against which the operation of KVM/370 can be
3udged. These will be followed by selected KVN/370 runs that

approximate the periods processing approach: one virtual machine (one

18

21 May 1978 System Development Corporation

TM-6862/001/00

color); two virtual machines (two colors), etc. Various test case

workloads will be defined and specific measurements will be performed.

Acceptance of KVM/370 will be made by relating dollar costs to run

time, and by an evaluation of the periods processing approach as it

impacts user requirements (see TM-S855/603/00).

CONCLUSION

In this paper, we have presented a design strategy for performing a

retrofit to VM/370 which will provide a multilevel secure operating
environment. The strategy is heavily based on the principles of least
privilege and least common mechanism. The research and development

activities described in this paper transpired in the period March 1977
through May 1978. The implementation of KVM/370 is currently in

progress and it is anticipated that a prototype version of the system
will be installed within the Defense Communications Agency in the fall

of 1978. Further results will be reported in a future paper.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions and suggestions made

by the following individuals: E. Book, M. Branstadt, E. Burke, J.

Fraley, T.H. Hinke, D. Hollingworth, A.K. Jones, H. C. Lauer, R.
Lyons, C.A. Melkerson, M. Moriconi, M. Orceyre, G. Popek, G.

Schroeder, W.M. Shasberger, S. Walker, C. Weissman, J.H. Yott, and
D. Zucker. We would also like to extend our sincere appreciation to

our technical editor, B.L. Sargeant, and N. Spies, who provided
typing support.

[(1 C.R. Attanasion, P.W. Markstein and R.J. Phillips,
Penetrating an Operating System: a Study of VM/370

Integrity," pp. 102-116, IBM SYSTEMS JOURNAL, vol. 15, no.1,

International Business Machines Corp., 1976.

19

2 May 19b2 System Development Corporation
TM-6062/001/00

(2] A security level (C, K} consists of a hierarchical

classification C from the ordered set (unclassified,

confidential, secret, top secret), and a category K consisting
of a subset (possibly empty) of the set of special access

compartments.

[3] The semi-trusted processes serve a. schedulers and allocators

of global resource3 and have the potential to be used as an

illicit signalling path in violation of the Mitre *-property
by modulating the global state variable, TIME. There is no

known method for formally demonstrating that an
algorithmically correct, Trojan Horse free, scheduler cannot

be manipulated by users in such a way that the users can cause

clock time to become a signal to other users.

(4] D.E. Bell and L.J. LaPadula, "Secure Computer Systems: A
Refinement of the Mathematical Model," MTR-2547 vol III, the
MITRE Corporation, Bedford, Massachusetts, 28 December 1973.

[51 B.W. Lampson, J.J. Horning, R.7. London, J.G. Mitchell,
and G.J. Popek, "Report On The Programming Language Euclid,"
Xerox Research Center, University of Toronto, USC-ISI and UCLA
respectively, December 1976.

[6] P. Janson, "Using Type Extension to Organize Virtual Memory
Mechanisms," MIT/LCS/TR-167, Massachusetts Institute of
Technology, September, 1976.

[71 D.P. Reed, "Processor Multiplexing in a Layered Operating
System., MIT/LCS/TR-164, Massachusetts Institute of
Technology, June, 1976.

[8] D.E. Denning, "Secure Information Flow in Computer Systems,"
PhD. Thesis, Purdue Univ., Computer Sci. Dept., West
Lafayette, Indiana, May 1975.

28

21 May 1978 System Development Corporation
TM-6062/001/00

191 B.W. Lampson, "A Note on the Confinement Problem,"

COMMUNICATIONS OF Thz ACM, October, 1973, pp. 613-615.

[101 D.E. Bell and L.J. LaPadula, "Computer Security Model:
Unified Exposition and Multics Interpretation," ESC-TR-75-
306, The MITRE Corporation, Bedford, Massachusetts, June

1975.

[111 AWACS Jovial Staff, "Jovial User Manual for AWACS J3," TM-
WD-751/256/60J, July 12,1976.

(121 J. Millen, Security, Verification in Practice, COMMUNICATIONS
OF THE ACM, May 1976, Vol. 19, Number 5, pp. 243-250.

c2

j 21

21 May 1978 System Development Corporation

TM-6062/001/00

APPENDIX A

A SOLUTION TO THE "LOAD REAL ADDRESS" PROBLEM

BACKGROUND: During the first year of the KVM/370 project, attention
was paid to what is known as the "Load Real Address" problem. This
problem is concerned with the fact that an NKCP needs to be able to
"locate" certain pages of the VMs under its control. This is handled

in VM/370-CP by the Load Real Address (LRA) instruction. The LRA may
be used for channel program translation, or to lo~ate the operand(s)
of a privileged operation that CP is simulating.

The problem which arises in KVM/370 is that the decision to "steal" a

page is made by a global process, not under control of the NKCP.
Consequently, there is no guarantee that the page, once "located" by
the NKCP, will stay at the same real address, or even remain in main
storage, long enough to be used. In order to avoid frequent and
embarrassing denials of service, it is necessary to guarantee that a
virtual page stays in the same place from the time the NKCP has been
given its real (or 'real") address, until the NKCP is no longer
relying on the address given for that page. The following discussion
expands on the complexities of the problem and presents what is
believed to be a solution to it.

RELATED CONSIDERATIONS: During the year several points of view have
been held concerning real addresses. It would probably simplify the

kernel-NKCP interface if the NKCP were allowed to access the real
addresses of the pages under its control. On the other hand.. there

are several high bandwidth data channels involving real page
addresses. The current design calls for the NKCP to gain access to
pages containing operands by having them placed in its own address

space (The kernel inserts their real addresses in the NKCP's page

22

rl ý, 1

21 May i978 System Development Corporation
TM -6062/881/ 66

table). This allows the NKCP to read and/or modify data for
instructions that it simulates for its VMs, without knowing the real

addresses of the pages. For channel program translation, the NKCP
will leave virtual addresses in the IDAW lists, which the Request-I/O
handler will translate to real addresses.

In order to simplify the kernel's handling of process scheduling, ic

was decided to treat NKCPs as logically non-interruptable. The kernel

will refrain from presenting the NKCP with interrupts during its

operation (just as VM/370-CP is designed to run with interrupts
disabled;. The kernel will also refrain from running any other NKCPs
until the current one signals che end of its critical region.

THE SOLUTION: The operation of an NKCP is considered as a critical
region from the time it is entered until it dispatches a VM or
relinquishes the CPU. Any interrupts taken by the kernel during this

period will be handled to the extent possible by the kernel and
schedulers, but no othtr NKCPs will be dispatched, even if the current
NKCP's time-slice ends. Interrupts requiring action by any NKCP,
including the current one, will be stacked until the end of the

critical region. Any pages swapped in at the NKCP's request or to
which the NKCP gains access (by "attach page") will be placed under a
temporary lock which prevents their page frames from being stolen
during the critical region. The critical region (and temporary lock)
will end when the NKCP makes either a Dispatch-VM or a Release-CPU
kernel call. If an NKCP requires that a page be at a fited address
for a longer period of time, it must make an explicit Lock-Page call.

Note that such locks (either temporary or long-term) cannot be
attached to a page which is not present or which is being used for a

conflicting purpose. For example, a page that has been stolen and is
being swapped out cannot be locked unless the requester can reclaim
the page (this ability is not supported by the current KVM/370
design). A page which is being used for the buffering of input cannot
be locked for CPU usage or output, nor can a page being used for the
buffering of output be locked as an input buffer.

23

21 May 1978 System Development Corporation
TM- 6062/001/08

This approach has the following consequences:

(1) No page will be stolen from an NKCP or its V14a except

when the NKCP is running a VM or waiting for an

interrupt. (The latter case is equivalent to DMKDSP

loading a wait-state PSW because there is no work to

do). VM/370-CP always checks page status when a new

request arrives from a VM by doing a LRA and/or

calling DMKPTRAN. Similarly, NKCP does not rely on
page locations remaining constant across such

operations, so stealing a page cannot cause the NKCP

to make an erroneous assumption.

(2) If VM/370-CP requires that a page keep the same real
address after a call to the dispatcher, it explicitly

requests DMKPTR to lock the page. Thus, if the NKCP
requires a page to stay in main storage across U
Dispatch-V1 or Release-CPU calls, it must explicitly
request a lock on that page. Otherwise the kernel or

Select routine will be permitted to steal the page if

it is the "best" page to steal.

(3) Since the kernel will call other NKCPs (that is, by
invoking the CPU scheduler) only when the current
process makes a Dispatch-VM or Release-CPU call,
there can be no "surprise" loss of the CPU to another
NKCP. This means that the kernel need not save and
restore the registers in the KPROCBLOK for each
process.. Instead, a single level of register storage
will suffice (for G-regs and timers only, since
neither the kernel nor the trusted/semi-trusted

process will use the F-regs). Each NKCP must be
written so that it saves its own registers whenever
it makes a call that invokes another process or ends

its critical region. [This is not directly related

24

21 May 1978 System Development Corporation

TM-6062/001/90

to the LRA Problem, but simplifies the design of

KPROCBLOKs and the management of space for KPROCBLOKs
and KVMBLOKsj.

LOCKS: The kernel provides three types of locks to NKCPs.

1. A temporary lock is attached to each page which is swapped in
at the request of an NKCP nr to which the NKCP is given
access as a result of an attach-page request. The lifetime
of the temporary lock is the NKCP's critic.Al region (i.e.,
until the NKCP releases the CPU or dispatches a VW). The
temporary lock prevents the page from having its frame
stolen; the NKCP may release the page, however, which cancels

the temporary lock.

2. An I/O lock is attached to each page used in an I/O request.
The page must be in main storage when the request-I/O call is
made. The lifetime of the lock is concurrent with the I/O
request (the lock is released when the requested I/O
operation completes). The I/O lock can be cancelled only by
cancelling the I/O operation.

3. A long-term lock is attached to a page at the request of any
NKCP with access to that page. The long-term lock is
permanent until cancelled by a specific request. Only the
NKCP which requested the lock can cancel it. The kernel
calls Lock-Page and Unlock-Page -ill be provided for this
purpose. This type of lock can be used by an NKCP in
response to an opetator "LOCK" command or while gathering
multiple pages (e.g. for an I/O operation) to insure that
pages obtained earlier do not get swapped out while obtaining
other pages.

-.1

0 .
':(4

21. May 1978 System Development Corporation
TM-606 2/001/00

All three types of locks protect the page from being stolen until the
NKCP is finished with them. The second and third types of locks also
prevent the NKCP from releasing the page until the lock has been
cancelled.

If the SELECT routine (a semi-trusted process) attempts to select a
page for which a lock exists, it will be re-entered to select another
page. The kernel will refuse to steal a frame from a locked page. If
the NKCP attempts to releas~e a locked page (via release-page) or to
zwap out such a page, the result depends on the type of -lock(s)
Attached to the page. If only a temporary lock is attached to the
page, the temporary lock will be released and the request honored. If
an I/0 lock or a long-term lock is attached to the page, the request
will be denied.

26

21 May 1978 System Development Corporation
TM-6062/001/00

APPENDIX S

A GENERAL COUNTERMEASURE FOR QUOTA-TYPE tEAKAGE PATHS

The allocation of objects from a global pool of finite size allows use

of that limited size as a communication path for covert transmission

of data. The sending process repeatedly requests resources from the

pool until a request is denied. At that point the sender knows the

pool is exhausted and can release the. CPU and allow other processes to

run. The receiver requests a few objects from the pool, then releases

them. The sender releases a large number of objects into the pool to

send a one, or exhausts the pool to send a zero. The receiver

receives a one or zero depending on whether its requests are

satisfied. Other processes may introduce noise by exhausting the pool

with legitimate requests or releasing objects they no longer need.

Such noise can be filtered out via normal redundancy techniques. The

statt of the pool is a variable shared between sender and receiver,

creating a storage channel whose bandwidth is dependent on the

frequency with which such requests can be made.

Analysis of the preliminary design of KVM/370 reveals a number of such

resource pools:

*Disk Pages (Page Slots)

*Main Storage Pages (Page Frames)

*Spool Cylinders

27

21 May 1978 System Development Corporation

TM-6062/001/00

Temporary Disk Cylinders

Kernel Table Entries

Kernel Storage for Dynamic Creation of Tables

A number of countermeasures have been adopted to control the use of
these pools as communication channels. (11 Prediction is used on page

slots and entries in the KVMTABLE and PROCESSLIST. Whenever a user
attempts to Log In (a relatively infrequent event), a check is made to
determine whether the necessary page slots and table entries are

available. The user is denied access if they are not. (2] Temporary

disk cylinders are subpooled; each security level has a private pool

from which it makes allocations. No global pooling of TDisk is

provided. [3] Requests for main storage pages and spool cylinders are
never refused. The satisfaction of a request for a page frame or

spool cylinder is reported by an interrupt which may occur immediately
or after an arbitrary period of time. This converts a potential _

storage channel into a timing channel and lowers the bandwidth. (A

process which exhausts the pool is unable to free the entries it has
requested until the necessary I/O has been performed).

However, some types of requests for kernel tables cannot be predicted,
and their satisfaction is not dependent on I/O.

Further, subpooling kernel storage by security level would be

extremely wasteful of main storage which is a precious resource. The
communication channels involving these quotas are being tolerated but

restricted in bandwidth. Whenever a process request is refused

because of exhaustion of a kernel table or storage pool, a return code

is provided indicating to the process that some quota has been
exhausted (without specifying which one). After that the process will
not be permitted to make another such request for a period of time.

Until that time period is over, any request by that process depending
on such a quota will be denied without checking the resource pool and
the return code will indicate 'too soon." In this way, the

28

21 May 1978 System Development Corporation
TM-6062/001/00

communication channel iz3 limited to one bit per time period. By

* setting the time period to .1 second, these communication channels are

restricted to 10 bits per second.

This technique can be used on any system that has a real-time clock

and can be used on any resource pool. It can be applied instead of or

in addition to other countermeasures for control of quota-type data

channels.

29

